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A generalized nonlinear Maxwell model which had previously been analyzed for plane Couette geometry is
here applied to a lid-driven cavity flow. The full three-dimensional hydrodynamical problem is treated numeri-
cally. Depending on the relevant model parameters, both smooth laminar and low Reynolds number turbulent
flows are found, strikingly similar to the experimentally observed elastic turbulence phenomena in polymer
solutions. Representative results of the calculated flow patterns, as well as measures for the turbulent nature of
the flow are presented graphically.
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I. INTRODUCTION

It is common knowledge that turbulent flow occurs in
simple Newtonian fluids when viscosity does not dominate
the dynamics of a material. Inertial turbulence results when
inertial forces, caused by high velocities, are greater than
viscous forces, and random eddies and flow fluctuations oc-
cur. The Reynolds number Re is defined by the ratio of in-
ertial to viscous forces �1�. Typically for pipe flows Re
�2300 gives turbulent flow, with an intriguing transition
from laminar flow occurring below this �2�.

However, other mechanisms can dominate to produce tur-
bulent effects in flows. Elastic forces and nonlinear mechani-
cal instabilities in certain flowing materials �e.g., viscoelastic
fluids� have displayed all the properties of developed turbu-
lence, but in contrast, here typically the value of Re only
needs to be very small to observe the effect.

Here we present the development and investigation of a
spatially resolved model for the rheology of complex fluids,
applied to flow geometry which requires the analysis of the
full three-dimensional hydrodynamic problem. The equation
for the conservation of momentum is supplemented by a con-
stitutive equation for a superposition of stress. The viscoelas-
tic and non-Newtonian behavior, as well as normal stress
effects are described by a nonlinear Maxwell model for a
contribution to the stress tensor. Another contribution to the
stress involves the second Newtonian viscosity which is
reached at high frequencies and for high shear rates. The
nonlinear Maxwell model is a generalized Maxwell model
equation which contains temporal and spatial derivatives of
the stress tensor and, in particular, terms nonlinear in the
stress. By tailoring the details of the nonlinear terms it is
possible to describe different fluid properties, with different
responses to imposed strains, viz. stationary flow with shear
thinning and shear thickening as well as periodic and chaotic
stick-slip-like behavior in plane Couette flow. Here the ge-
ometry is a lid driven cavity flow, chosen to study shear

induced structures. The coupled equations for momentum
conservation involving the three components of the velocity
field and for the five components of the deviatoric stress
tensor, subjected to the appropriate boundary conditions, are
solved performing computer calculations based on finite dif-
ference approximations and a pressure correction method.
Essential spatial terms that were not considered in previous
studies of spatially homogeneous flow, as they were not re-
quired for plane Couette flow, are now included to complete
the studies of inhomogeneous flow. Model parameters are
investigated for a range of values to discover two main flow
regimes. A laminar-like single vortex develops which gives
way to turbulentlike flow when parameters are changed.
These flows are visualized using streamlines of velocity
fields and intensity plots for stress components. Statistical
analysis of the flows is used to give measures for turbulent
properties. Such measures lead to the conclusion that the
flows are indeed turbulent in nature, having many different
size scales and chaotic like dynamics.

The model studied here reveals many features typical for
elastic turbulence observed in polymer solutions. Recent ex-
periments show flows that can become irregular at low ve-
locity, high viscosity and in a small tank �3,4�. The turbulent
flow apparently arose due to the nonlinear mechanical prop-
erties of the solution, and developed as polymer molecules
were stretched in the primary shear flow, which makes it
unstable and causes irregular secondary flow. It is the very
back reaction of the polymer molecules on the flow that
causes secondary flows �5�. Normal stresses in circular
streamlines generate a radial pressure gradient �directed out-
ward or inward�, which if large enough can drive more com-
plex flow such as those seen in the Weissenberg effect. The
lid driven cavity flow, which is seen to generate a single
vortex, is a convenient and well-accepted way of studying
this. The study of stretching of polymer molecules by ran-
dom three-dimensional turbulent flows has shown that the
first normal stress difference �N1� is connected to the irregu-
lar behavior �6,7�. The stress tensor, including any elastic
contributions from polymer molecules drives the elastic tur-
bulence phenomena �8,9�, as indicated in the experimental
work by Groisman and Steinberg �10–13�. The role of elastic
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forces also explains the drag reduction observed in polymer
concentrations �14�.

Here we demonstrate that the nonlinear Maxwell model
possesses all the rheological properties needed to generate
numerical solutions which reveal low Reynolds number tur-
bulence.

II. MODEL EQUATIONS

To model the full hydrodynamical problem, the momen-
tum conservation equation and the incompressibility condi-
tion are to used for the flow velocity v,

�
dv

dt
= − �p + � · � , �1�

� · v = 0, �2�

p is the hydrostatic pressure. The total friction stress � is
taken as deviatoric, i.e., as symmetric traceless. A superposi-
tion of stress is considered to generalize the Navier-Stokes
equation, such that non-Newtonian viscoelastic effects can
be included,

� = 2��� + �2Gref� . �3�

Here �� is the second Newtonian viscosity, � is the strain
rate tensor, and Gref is a reference value for a shear modulus
which need not be specified here. It is introduced for conve-
nience, such that the extra stress � is dimensionless. For �
=0 the Navier-Stokes equation is recovered, with the viscos-
ity � equal to ��.

The extra stress � is assumed to obey the following gen-
eralized Maxwell model,�15,16�

�4�

The constitutive relation selected is a choice motivated by
previous work on relaxations of the alignment tensor within
molecular fluids and nematic liquid crystals where the equa-
tions have been derived within the framework of irreversible
thermodynamics �17,18� and from a Fokker-Plank equation
�19�, using the stress-optical law �20,21�. Despite formal and
mathematical similarities, the friction stress tensor employed
in the liquid crystal problem, e.g., see �22–24�, differs from
that one used here.

In the above equations, � is the strain rate tensor, � is the
vorticity, � is akin to a slip parameter in the Johnson-
Segalman model �25�, �0 is a relaxation time coefficient, �0 is
a characteristic length and ��� �	

�� being the derivative of a
potential function with respect to �, where 	 is the potential
function to be chosen. Here the symbol

. . .

represents the symmetric traceless �deviatoric� part of a ten-
sor, e.g.

xab = 1

2
(xab + xba) − 1

3
xccδab,

where 
ab is the unit tensor.
The substantive �advective� derivative is used in Eqs. �1�

and �4�,

d

dt
� � � �

�� � �
�t

+ v · �� � � . �5�

The vorticity and the rate of strain are found as follows:

ω = 1

2
(∇× v) , γ = ∇v .

The “linear” Maxwell model is formed from a potential
comprised of the second order scalar invariant I2,

	 =
1

2
AI2, �6�

with a dimensionless coefficient A�0. Thus this implies,

�� =
�	

��
= A� . �7�

A nonlinear generalization was invented to treat shear
thickening and shear-thinning behavior �15�. A special
�simple nontrivial� case for the potential function, which cor-
responds to an expansion of 	 up to terms of fourth order in
�, using the second and third order invariants I2 and I3 reads,

	 =
1

2
AI2 −

1

3
BI3 +

1

4
CI2

2, �8�

which implies,

Φ
π = Aπ −

√
6B π · π + Cπ π : π . �9�

In Landau theory the assumption is made that the param-
eter A depends on the temperature T or the density �, accord-
ing to A=A0�1−T0 /T� or A=A0�1−� /�0� with characteristic
temperature T0 or density �0. The specific dependence of A is
not needed but presupposed that it will decrease with de-
creasing temperature or increasing density. It is also assumed
that A0�0, B�0, and C�0. In Eq. �9� the coefficient A
determines whether terms of higher order in �� are of rel-
evance.

Without flow, in a spatially homogeneous system, the sta-
tionary solution of the Maxwell-model equation is ��=0. In
a fluid state one has �=0 and it is a stable solution corre-
sponding to the absolute minimum of the potential function
	. However, the quantity �� is a nonlinear function of the
stress, so solutions with ��0 are possible. If such a solution
is stable, the system possesses a yield stress.

The first investigation of the model �4� with potential �9�
was in 1994 �15�, when it was introduced to describe shear-
thinning and shear-thickening behavior. Applied to the
simple case of spatially homogeneous plane Couette flow, it
was shown that stress growth, relaxation and hysteresis can
be displayed. Also considered were the special cases of vor-
ticity free planar �biaxial� deformational and �uniaxial� elon-
gational flow geometries. Ten years later the model was re-
visited �16� to consider extra symmetry breaking components
of the stress tensor in spatially homogeneous plane Couette
flow. Periodic and unstable solutions were explored to reveal
chaotic oscillations in the stress, a phenomenon termed
Rheochaos.
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The same model has recently been used to compare the
rheological behavior in fluids with anisotropic and isotropic
potentials �26�. This work again was restricted to the plane
Couette geometry in spatially homogeneous flow. A bifurca-
tion analysis was performed by Goddard et al. �27� �also
under spatially homogeneous flow conditions� to explore the
range of dynamic solutions present in the model and to show
typical bifurcation routes to chaos.

The step to spatially inhomogeneous flows is essential for
the study of secondary flows and the shear banding phenom-
ena �28–33�, as well as to provide a more physically com-
plete picture of the flow, missing from previous investiga-
tions. Spatiotemporal rheochaos has been displayed in
similar models for nematogenic fluids �34,35�.

To characterize the importance of nonlinearities in the
system, scaled variables are introduced. The components of
the stress � are expressed in units of the reference value
�c= 2B

3C , for an apparent yield stress which is determined
from coefficients B and C in the potential term. The potential
term becomes characterized by a single dimensionless pa-
rameter, A�=A /Ac, which controls the strength of the linear
term in relation to higher order nonlinear terms, as follows:

Φ
π = A∗

π − 3
√

6 π · π + 2π π : π . �10�

Time is rescaled by �c=�0Ac
−1, with Ac=2B2 / �9C�. The shear

rate �c
−1, is denoted by � and stress rescaled by Gref, as

mentioned above. Length is rescaled by a characteristic
length �ref, used as the unit of length for the cavity. During
rescaling, the parameter �0 in Eq. �4� becomes the model
parameter � given by �2=�0

2Ac
−1.

In these investigations A� becomes one of the main pa-
rameters studied, to explore the role of nonlinearities in
flows. It is recalled that the standard Maxwell model is ap-
proached for A��1. The fascinating dynamic behavior re-
ported in �16� for the plane Couette flow occurs in the range
0A�1. The material is considered to be rheologically
homogeneous, that is all the material parameters remain con-
stant throughout the cavity.

The system of equations to be solved consists of the three
components of the velocity field and of the five components
of the symmetric traceless stress tensor. As in our previous
studies �16,27�, the latter components, labeled by 0, 1, 2, 3,
4, are chosen such that 1 and 2 are associated with �xx
−�yy and 2�xy, respectively, where the lid is normal to the y
direction and it is moving in the x direction. The 0 compo-
nent is proportional to 2�zz− ��xx+�yy�, the components 3
and 4 are essentially equal to �xz and �yz.

III. TECHNIQUES FOR NUMERICAL SIMULATION

The flow considered is a lid-driven cavity type, which
consists of a volume of fluid material confined by imperme-
able solid walls and a moving top lid as illustrated in Fig. 1.
A three-dimensional flow was considered so that all 3 com-
ponents of the velocity and all five components of the stress
tensor become involved, and such that secondary flows will
be allowed to develop.

The cavity flow problem is one that has been previously
studied quite extensively. Solutions are available using a va-

riety of methods which all work around the incompressible
Navier-Stokes equations. Most commonly studied is the two
dimensional problem.

Taking the example of a 2D cavity in the shape of a
square, it is found that in general, for flow of Newtonian-like
fluids at low flow rates one observes a single strong vortex
centered in the cavity. For a three-dimensional cube cavity
the flow would be expected to resemble that of a rotating
cylinder, much like the 2D case, but spatially modulated in
the extra dimension. For low lid speeds the system tends to
reach some steady behavior, resembling laminar flow. For a
faster moving lid the flow can become turbulent ��36� used
Re=10 000� but this regime is outside of the scope of this
investigation, and the focus is on low speed lid movement.

The lid-driven cavity configuration can be achieved ex-
perimentally using a conveyor belt arrangement to provide
the continuous moving boundary for the top plate. The equa-
tions of fluid mechanics are only directly solvable for a lim-
ited number of special flows. For more complex flows �and
models� the use of computers becomes a requirement �37�.
While the partial differential equations still may not be
solved analytically, approximate solutions can be found nu-
merically. Systems of algebraic equations, which are solv-
able on computer, replace the differential equations through
discretization methods. The domains of space and time be-
come discrete quantities, where the accuracy of solutions at
these points is controlled by the methods used in approximat-
ing the original system. In general, a higher accuracy re-
quires more computing resources.

The technique chosen for numerical calculation is the fi-
nite difference method. Second-order approximations ap-
proximate the spatial derivatives, and a fourth-order Runge-
Kutta method is used to approximate the time derivatives.

Other approaches such as the pseudospectral method have
recently been used to solve the linear Oldroyd-B model in
Kolmogorov flow �38,39� to reveal elastic turbulence. The
computational domain is split into cubes of size k, in the unit
of length �ref. Each cuboid contains either liquid or solid,
with the solid cuboids forming the boundary of the closed
cavity. The components of velocity and stress fields are de-
fined at each corner of the cube. In this way, corners of the
liquid cube which align with the boundaries of the cavity
will correctly match up with the Dirichlet boundary condi-
tions which need to be imposed.

The size of the temporal step h, in reduced units of �c,
should be small enough to allow fields to diffuse in time

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

(a)

z
y

V

x

FIG. 1. Illustration of the lid-driven cavity chosen for simulation
and an expected resulting laminar flow.
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before space, as in the Courant-Friedrichs-Lewy stability
condition �40� for solving partial differential equations. For
the simulations of this model, tests were made to ensure that
choices of k and h are going to be stable by constructing a
stability diagram. Many simulations were investigated with
different choices of h and k and the stability outcome re-
corded. A line of stability is found which gives the condition
that the time step h should obey h1.5k2 in reduced units.
The balance can now easily be chosen to ensure sufficient
spatial resolution for a given problem, and finding the most
efficient time step to ensure stability.

The effect of choosing different values of k and h was
compared using slices of the velocity components, where
very good agreement was seen. The spatial grid step has
therefore been fixed to k=0.1, with a resolution of 50 grid
points for each axis, and the temporal step to h=0.005 in the
following calculations.

The discretized pressure field has its points staggered such
that the pressure is defined at the center of each cube. This
allows for the Neumann boundary conditions to be applied
correctly on the faces of all solid cuboids. The pressure term
is used in a way that continuity is also ensured through a
pressure correction method �37�. A resulting Poisson equa-
tion can be solved efficiently through a successive over re-
laxation �SOR� method, which can easily be parallelized
�41�. The pressure in-compressibility condition and the cal-
culation of the pressure is one of the more computationally
demanding parts of the calculation, so the most effort had to
be applied here in order to get results within acceptable time
frames.

Boundary conditions at the fluid-surface interface require
that material cannot travel into the solid wall �normal veloc-
ity is zero� and a no-slip condition is chosen for tangential
motion relative to the velocity of the wall,

nivi�wall = 0 or ni�Vi − vi��wall = 0 �11�

vi�wall = Vi, �12�

where ni is the local unit normal to the surface and Vi is any
imposed velocity of the boundary wall. The no-slip condition
is a good first approximation for flows. Experimental evi-
dence has shown that in most cases even though one might
expect there to be a slipping mechanism, flows modeled with
no-slip conditions match accurately �42�, through the argu-
ment that in molecular terms the intermolecular forces be-
tween liquid and solid wall give a bond which results in the
no-slip condition. The value for the components of � at the
boundary is determined locally using zero gradient Neumann
conditions.

The field of boundary conditions in continuum theory for
entangled systems is still a developing field, and many ap-
proaches can be taken to describe the underlying physical
effects. Boundary interactions can be imposed using Neu-
mann, Dirichlet, or Cauchy conditions. The boundary condi-
tions affect features of flow at the boundary layer, and certain
phenomena can be suppressed in the same way as changing
the anchoring between liquid and solid interfaces �30�. The
idea to link with molecular dynamics simulations to form a
hybrid model seems promising �43–50�. For a discussion of

boundary conditions in complex fluids which can lead to an
apparent slip see �51�.

The velocity of the top plate is set so that �v vanishes at
the sides and corners,

vlid = V0�256x2�1 − x�2z2�1 − z�2� , �13�

as the discontinuity of the flow field at the upper corners
would cause the pressure to diverge. Here x, y, and z have
units of the box length, and the center of plate has a vx
velocity component equal to V0. This provides a slight de-
viation from traditional lid-driven cavity flows, but the over-
all effect remains the same.

One method of displaying flows is to take snapshot in
time of a 2D slice through the cavity. The most important
slice is perpendicular to the moving top plate and parallel
with the plate velocity vector. This slice, preferentially taken
in the middle of the box, intersects the main flow that occurs
in the cavity. The data can then be displayed through inten-
sity plots, which can incorporate contours. Other slices can
be used to explore the flow in other directions.

IV. LAMINAR FLOW REGIME

Laminar flows occur when the viscous forces dominate in
a material. Any excess energy is dissipated in viscous damp-
ing meaning that the flow is characterized by smooth stream-
lines. Such constant smooth flow has good transport proper-
ties, and is important for efficient flows in pipes.

Calculations from this model have shown that laminar
flow can occur when parameters are appropriately chosen. As
expected, when A� is large enough �A��1� the linear terms
in the potential dominate, and the resulting flow becomes
laminar. Figure 2 shows typical flow streamlines for simula-
tions with A��1 in the x-y plane. Here a single vortex can
be seen, off center due to the low value of Re, characteristic
of laminar flow profiles. The only stress field present is next
to the moving plate, an example is shown later in Fig. 7�c�.

To provide a measure of how fast the material in the cav-
ity is flowing, an average velocity vav is calculated by aver-

1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

FIG. 2. �Color online� Typical simulation results �streamlines�
for large A� or with the extra stress term removed �by letting Gref

=0� showing a laminar flow profile. Here h=0.005, k=0.1, V0

=1.0 using a cut through the center of the cavity in the x-y plane.
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aging the magnitude of the velocity vector at each fluid grid
point inside the cavity domain.

Such a measure indicates how well the material is flowing
within the cavity. In comparing simulation results this calcu-
lation reveals how freely the material is flowing, or how
active it is.

From the initial starting conditions of the simulations,
which correspond to a system at rest, the imposed forcing of
the cavity top-plate increases the fluid velocities in the cav-
ity. Figure 3 shows the average velocity vav as a function of
time for a number of different values of A�.

In the laminar flow regime, the parameter A� has a small
effect on the average cavity velocity. A small velocity over-
shoot can be seen for the case of A�=1.0, but overall this
flow then has a lower average velocity than that of higher
values of A�. The parameter �̃ occurring in the figure caption
is related to the parameter � of Eq. �4� by �̃=� /�3.

Once laminar flow has stabilized �any transient periods
have passed�, a measurement of the viscosity can be found.
The viscosity in the following is presented in units of a ref-
erence viscosity �ref =Gref�c. As such, a dimensionless effec-
tive viscosity H=�ef f /�ref is used to express the results.

The viscosity is a material property which, in general,
depends on the shear rate. In an experimental setup as con-
sidered here, different shear rates occur at different positions
within the box. It is desirable to characterize the viscous
behavior of a substance within such a device by a single
number which is an effective viscosity �ef f. The cavity vol-
ume average of shear stress in the shearing direction is taken,
and divided by a reference shear rate given by the macro-
scopic value V0 /Ly,

�ef f =
��2�c�2 + H��2	

�V0/Ly�
, �14�

Here Ly is the height of the cavity across the shearing
direction, V0 the plate speed, �2 and �2 are the components
of the extra stress and rate of stress tensors in the shearing
direction respectively, their combination in this form gives
the xy component of the total stress. If the flow is not laminar
then the tensor components of �2 and �2 will of course be
functions of time as well.

The effective viscosity presented next corresponds to the
laminar regime. This can be achieved by choosing values

A��1.0 to ensure that the nonlinear terms are of less impor-
tance in the potential function.

The value of the effective viscosity can be plotted as a
function of parameter A�, as displayed in Fig. 4�a�. Increas-
ing A� has the effect of decreasing the effective viscosity,
hence thinning the fluid. Different lines correspond to differ-
ent top-plate speeds, and show that the material has lower
viscosities at higher plate speeds.

This dependence on plate speed can be seen as the plate
velocity V0 is changed, and A� is fixed as in Fig. 4�b�. The
results show that the material in the cavity behaves as a
shear-thinning fluid. The gradient of the line changes as the
parameter A� is adjusted; steeper lines for lower values. For
the lowest value of A� plotted here the line is not so smooth,
hinting that there is a more complicated behavior to be found
when lowering A� further.

V. TURBULENT FLOW REGIME

When choosing appropriate model parameters, the calcu-
lations reveal that a turbulent-like flow is occurring. A par-
ticular example is shown using A�=0.2, �̃=0.1, �=0.2, V0
=1.0, through streamlines and intensity plots in Fig. 5. A
snapshot in time of the stress components and velocity
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FIG. 3. Average cavity velocity for various values of A�. Here

�̃=0.1, �=0.2, V0=1.0, �c=4.0 and H�=0.5. In this and following
figures �
� is used to represent reduced units.
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FIG. 4. The average cavity viscosity as a function of �a� A� and
�b� V0 for various values of driving plate velocity. Here the other
parameters are chosen as �̃=0.1, �=0.2, �c=4.0 and H�=0.5.

FIG. 5. �Color� Example of stress intensity and velocity stream-
lines for a low A� turbulentlike flow. The slice is taken through the
center of the cavity in the x-y plane. From top left, �xy, N1, N2, �xz,
�yz, and streamlines.
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streamlines are displayed using a slice through the center of
the z axis. Slices taken through the other axes display equally
turbulentlike behavior. The parameters chosen for this flow
correspond to Re�1.0.

This example has many of the features of turbulence, such
as random eddies forming and chaotic flow properties, but
occurs at low Re numbers which leads to the hypothesis that
the effect is due to the coupling with unstable behavior in the
model for the viscoelastic material.

From analytic calculations of the linear response in a spa-
tially homogeneous plane Couette flow with oscillating rates
of strain, the apparent relaxation time � for this model is
high when A� is low. Thus, the Weissenberg number is found
to be Wi=� /A� for low values of H� �52�. The Weissenberg
number is a dimensionless number used in the study of vis-
coelastic flows. It is given by the ratio of the relaxation time
of the fluid to the characteristic rate of deformation. This
number gives a characterization for the degree of nonlinear-
ity with respect to the shear rate, and the likely hood of
nonlinear rheological behavior and the chance of the elastic
turbulence developing. By this measure the nonlinearity is
large when A� is low, and the appearance of turbulence is
likely. In plane Couette flow, the nonlinear nature of the
equations which are used to phenomenologically model vis-
coelastic materials lead to instabilities for certain parameter
ranges, e.g., A�1. This effect has previously been docu-
mented for this particular model in a homogeneous flow �16�
and explored through bifurcation analysis �27�. The normal
stress difference terms became large enough to overcome the
dissipative forces of viscosity and create secondary flows
from differences in the stress, with instabilities causing the
system to show spatial chaos. These then display themselves
in the form of vortex structures appearing in the cavity, form-
ing a kind of soft turbulence disordered in space and time.

VI. PARAMETER SCANS

Scanning parameters reveals a host of information in
simulations, much like experimenting with real apparatus.
We use various statistical measures commonly used for
analysis of inertial turbulence. These include measures of
velocity fluctuations, distributions and spatial and temporal
correlations. For the estimation of size scales present in the
cavity, the autocorrelation data are analyzed for its osculation
parabola intercept �53� and area under curve yielding small-
est and largest eddy approximations, respectively.

In the following we outline the findings from indepen-
dently changing the three variables A�, � and V0.

A. Model parameter—A�

The parameter A� controls the shape of the relaxation po-
tential �� for the extra stress � by adjusting the magnitude
of the linear part. A number of simulations are run where the
only difference is the parameter A�. The other parameters are
fixed at V0=1.0, �=0.2, and �̃=0.1.

There is seen to be a clear cutoff point where flow
switches between laminar or turbulent/chaotic. In the turbu-
lent case there is an irregular temporal and spatial variation

in the stress �e.g., Fig. 5�, with the first normal stress differ-
ence being the dominant of the stress components, indicating
that this is one of the main causes for the resulting secondary
flows. In the high A� laminar flows, the stress plots show no
noticeable stress contributions, except near the moving
boundary.

Information gained from the velocity field is shown in
Fig. 6. Here the average cavity velocity is computed as func-
tion of time to show that this quantity fluctuates for the tur-
bulent flow, but not for laminar flow. The overall velocity is
also higher in the turbulent flows than the laminar flows.
Measuring the velocity distributions reveals a shift in the
mean value from close to zero to around 0.6, depending on
the value of A�. Finally measuring the velocity fluctuations
as a function of A� shows how the cutoff occurs at around
A�=0.6, with a general decrease in velocity fluctuation as A�

is reduced to this point.
The spatial chaos in the cavity appears to be present only

when there is a time-dependent behavior in the simulations.
The material parameter regimes for three-dimensional �3D�
chaos are in good agreement with the ranges found for spa-
tially homogeneous plane Couette flow as in �16�. In regions
of the cavity, specific local velocity gradients are thought to
trigger the nonlinear behavior leading to normal stresses,
which then spread through the cavity.

Measurement of the spatial autocorrelation in the flow
direction is displayed in Fig. 6�d�, where two types of result
appear. The longitudinal velocity correlation,

f�x� = v��1�v��1 − x�/�v��2 �15�

is calculated using an averaging with respect to time. Here �i
is a base coordinate and v� is the fluctuation from mean. The
size scale of the smallest eddies, � f, can be estimated from
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FIG. 6. �a� Average cavity velocity, �b� velocity distribution, �c�
velocity fluctuation and �d� autocorrelation results for various val-
ues of A�.
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the osculating parabola intercept �53�. The smallest eddies
are clearly smaller in size for turbulent flows. The size scale
of the largest eddies, � f, can also be estimated by consider-
ing the area under the curve. The largest eddies are measured
larger in size for laminar flows. These results are very much
expected as the laminar flow only has a single steady vortex
occupying the whole cavity.

B. Model parameter—�

The stress diffusivity term with coefficient � is added
for physical reasons and it is needed for numerical stabil-
ity. Changing the value of � has a direct effect on the
size scales of the features in the cavity and is thus referred
to as a characteristic size parameter. As can be seen in
Fig. 7, the larger � is, the larger the scale of the features. In
the latter figure, a large magnitude of � produces a laminar
flow. Other parameters are fixed at V0=1.0, A�=0.1 and �̃
=0.1.

Analysis of the velocity fields shows that the fluctuations
increase as � is increased, but then at a cutoff point of around
�=0.6 the solutions suddenly become laminar in flow, which
can be seen also in the average cavity velocity plot. There is
a small positive shift in the peak of the velocity distribution
as � is increased. Here the distinction between laminar flow
and turbulent flow is again obvious.

The autocorrelation data in Fig. 8�d� show the difference
between laminar and turbulent flows is still present. For �
�0.6 the flows are laminar in nature, so the autocorrelations
are very similar. In the turbulent flow as � is being changed,
the size scales are being changed, but its dependence is not
so clear.

Too small a value of � should be avoided to reduce the
chance of unwanted artifacts appearing in the solutions. The
diffusive term is present for stability, and as such it should be
ensured that the value of its coefficient � is always greater
than that of the spatial grid step k. Too large a value of � and
any extra stress generated is quickly diffused away. The
choice for � is therefore quite critical.

C. Model parameter—V0

The parameter V0 alters the velocity of the moving plate
on the top of the cavity, and ultimately the Reynolds number
of the flow in the cavity. For low values of V0 the average
velocity in the cavity is also low, and as shown before these
equations show chaotic solutions when the strain rate is low.
Other parameters are fixed at A�=0.1, �=0.2, and �̃=0.1.

Increasing V0 raises the average velocity in the whole
cavity and linear effects begin to dominate the flow. In the
bottom of the cavity the flow still remains turbulentlike, and
this affects the results of the statistical analysis. In Fig. 10
the average cavity velocity is increased by raising V0. This
does not appear to shift the peak in the probability too much,
but instead to excite the higher velocities. This is consistent
with a larger vortex forming at the top, while there is still
turbulentlike behavior below. The fluctuations on the veloc-
ity remain because of this, but finally begin to drop at the
high end of the scan.

The autocorrelation plots in Fig. 10�d� show that in gen-
eral for higher values of V0 there is an increase in the size of
the small and large scale features. This is also confirmed by
the streamline and stress plots above.

In summary, the parameter V0 is changing the value of the
average velocity in the cavity by imparting motion on its
surface. When the velocity �and hence rate of strain� is high
enough the model responds with a steady solution for � and

(a)

(b)

(c)

FIG. 7. �Color� Velocity streamlines and the shear stresses and
normal stress differences for �a� �=0.1, �b� �=0.5 and �c� �=0.6.
For each, from top left, �xy, N1, N2, �xz, �yz, and streamlines.
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therefore the total stress. What is seen in these simulations
for higher values of V0 is that in the top of the cavity the
velocity is higher and leads to laminar flow, while lower in
the cavity there is less velocity diffusing down and the tur-
bulent regime develops �Fig. 9 and 10�. As long as there is a
turbulent flow somewhere in the cavity there will be fluctua-
tions in the velocity as seen in the plots, but only the stream-
line figures can currently tell the full story for its location
within the cavity.

VII. SUMMARY AND CONCLUSION

The nonlinear Maxwell model studied here, on the one
hand, is rich enough to describe intriguing rheological be-
havior and low Reynolds number turbulence, on the other
hand it is simple enough to be applied in numerical calcula-
tions for three-dimensional hydrodynamical problems. The
findings seen in our special geometry can be correlated with
the rheological properties analyzed in a simple flow. For a

comparison of the dependence of the various types of flow
on the parameters �̃, A�, and �c, with the occurrence of time-
dependent responses in homogeneous plane Couette flow, the
stick-slip �tumbling� parameter �26� can be used. From first
observations, the parameter A� correlates well, especially
when relating Fig. 6�c� with our results in �27� where the
cutoff point is A��0.5 in each case. The nonlinear chaotic
responses that have been shown previously in this model
display now themselves in spatially resolved flow in the form
of “soft turbulence,” producing many vortex structures and
eddies.

The importance of a stress diffusion term is displayed, not
only for stability, but also to determine the size scale of any
features that evolve. The main focus was on the parameter A�

due to its effect on the potential term and the nonlinear
terms. This parameter can be seen to “switch” turbulent be-
havior on when the regime of low values �corresponding to
high nonlinearities� was selected.

The onset of turbulence appears to be triggered by regions
within the cavity where the local rate of strain corresponds to
unstable solutions for �. More specifically the rate of strain
must be low enough to relate to a oscillatory or chaotic re-
sponse from Eq. �4� as in �27�. When the other parameters
are chosen appropriately, this instability in the stress is then
large enough in magnitude to overcome the viscous damping
forces and results in secondary flows which are irregular in
nature and have time-dependent properties. This is confirmed
when increasing the lid speed, whereby the local rate of
strain �and the Re number� increases globally, and the re-
sponse of � is to be steady state �27�. This result agrees with
the many other studies of elastic turbulence and it’s occur-
rence only at low Re �3,54,55�.

This work presents a “proof of concept,” allowing for
future studies of this phenomena to be investigated. It would
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FIG. 8. �a� Average cavity velocity, �b� velocity distribution, �c�
velocity fluctuation, and �d� autocorrelation results for various val-
ues of �.
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FIG. 10. �a� Average cavity velocity, �b� velocity distribution,
�c� velocity fluctuation and �d� autocorrelation results for various
values of V0.
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be interesting to study how energy is dissipated in the cavity
so that an analog could be formed with the work by Kolmog-
orov �56� for inertial turbulence scaling.

It is also possible to formulate a six component model, by
using an additional dynamic equation for the trace of the
extra stress tensor. This gives an extra degree of freedom
which corresponds to an expansion/contraction of molecules,
like in rheological models involving the configurational ten-

sor or a pom-pom model �57–59�. Initial simulations using a
six component model reveal that irregular turbulentlike flows
are also able to develop.
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